介质内的光速

人们发现真空中的光速最大,而光在介质中传播,速度会变慢,将其归结于介质属性,而介质怎么个属性导致光速变慢,又是语焉不详。这里即已讲到光的折反现象,就顺便用以太旋涡理论解释一下光在介质中变慢的原因。

光在在介质中传播,其实就在介质的原子以太旋涡中传播,会发生原子以太旋涡对光的拖曳与滞留作用。即光在介质中传播时,顺涡流方向时,会出现V > C,逆涡流方向时,会出现V < C,但由于介质内原子以太旋涡方向的随机分布,导致整体上平均速度V=C。

最终光走的并不是直线光路,而是一种锯齿状的“之”字形光路,这是介质内的光的“时空弯曲”现象。

这种“之”字形的光路线程总距离L,显然要大于两个端点的直线距离l。而人们认识不到原子以太旋涡的存在,也就想象不了这一点,以为光走的是直线距离,得出v=l/t,结果有v < c,于是认为光速变慢。其实是v=L/t=c,即不是光的速度减慢了,而是光在介质中走了更长的路,花了更多的时间而已,光的平均速度一直都不变。

密度越大的介质,意味着有更高角动量的原子以太旋涡结构,于是对光的拖曳与滞留作用更大,表现为锯齿状的“之”字形光路更复杂,从而导致光路线程总距离L更大,于是光在介质内走过的时间T更长,当人们用这个时间代入速度公式计算时,有v=l/T<<c,自然这也是一种错觉。