电解

在经典化学理论中,电解指的是电流通过物质而引起化学变化的过程。由于西方科学界对电内涵的认识是错误的,将化学变化过程归结于电子得失迁移的理解也是错的,因此可以重新解构电解的实质。

电是导体中传递的定向以太振动波,这是电章节描绘的核心。电的复杂频率源于导体原子以太旋涡的高频振动写频在低频谐振波上。如此正确认识到的电的内涵,那么电解的实质是:

外来高频振动波(电)对电解质溶液里各分子以太旋涡的分解作用。

也即用电的波动作用来代替分子以太旋涡之间涡流偏向后的力的作用,从而发生化学变化。次生以太旋涡结构被振动波分裂,与原子核被中子(波)分裂一样,只是时空尺度、强度的区别:

次生以太旋涡(原子以太旋涡耦合结构)--原子核(更微观以太旋涡耦合结构)
                                                  电(振动波)--中子(振动波)
                                 次生以太旋涡分裂解体--原子核分裂解体
                产生新的分子(次生以太旋涡)--产生新的原子(微观以太旋涡)
                                     产生热(红外辐射)--产生光(射线)

如此认识,体现了物质作用在各个层次的统一,而非人们以为的电解反应与原子核分裂有迥然不同的内在机质。

以电解氯化铜水溶液为例,两个电极都为石墨棒,水溶液中分布有Cu+,Cl-,H+,OH-,H2O及各离子间动态耦合结构下的各种分子以太旋涡如CuCl2,HCl,Cu(OH)2。

电振动波在水溶液中传递,以阳极电极为中心,以阴极为外围边界,产生电场E梯度分布,即阳极指向阴极,电振动波产生的以太涡流的作用力逐渐减弱。CuCl2,HCl,Cu(OH)2,H2O等次生以太旋涡结构被电振动波破坏而游离出Cu+,Cl-,H+,OH-。与原本存在的Cu+,Cl-,H+,OH-一起在电场作用下分别向两电极迁移。

氯离子Cl-、氢氧根离子OH-受电场吸引而向阳极迁移。Cl-之间距离接近表现为浓度提高,产生耦合结构,形成分子次生以太旋涡,即氯气分子,因次生分子以太旋涡的振动与电振动波频率相去甚远而极小受影响,从而从水溶液中逸出,就是人们可以观察到的氯气。OH-离子则受高浓度Cl-排斥不能继续向阳极迁移。

铜离子Cu+、氢离子H+受电场排斥而阴极迁移,Cu+之间也距离接近表现为浓度提高,产生耦合结构与结晶现象,成为更大的颗粒--铜颗粒,铜颗粒表面原子以太旋涡与石墨表面原子以太旋涡或耦合,或表面湍流力场吸引,附着在阴极表面,就是人们可以观察到的铜。H+离子则受高浓度Cu+排斥不能继续向阴极迁移。

这就是人们在实验室观察到电解氯化铜水溶液的动态过程。其它物质的电解过程,都可以参考这一过程来相类似的描绘,实质都是电振动波对分子以太旋涡结构的作用,因不同分子以太旋涡之间的化学属性不同,电解分裂后有不同的化学现象。

这一小节的描绘,为电运动化学研究提供理论基础。