电解液电池即化学电池,是将化学能转化为电能的一种构架。这在生活中很常见,如酸铅电池,锂电池,干电池,伏打电堆等等。当下人们只是笼统的认识到化学电池是将化学能转化为电能的一个构架装置,但其化学能释放后转换为电能的过程受错误的电子迁移理论误导而不能正确认识这一实际的转化动态过程。通过分子以太旋涡耦合结构与电本质的重新认识,可以作一个动态过程的一般描绘。
化学能,就是分子层次禁锢的运动,当分子以太旋涡解体或化合时,禁锢的运动被释放出来,人们就观察到能量反应。由此可知,化学电池原理,其实与上面物体表面物理章节中提到的电容器的放电原理是一致的,电容器放电过程是微观以太湍流解体产生振动波后的定向传递,而化学电池放电过程就是:
分子以太旋涡分解或化合反应产生振动波后的定向传递
分子以太旋涡与微观以太湍流本质都是以太涡旋,是微观尺度下的禁锢的运动。两者主要区别是承载的框架--化学电池结构与电容器给人的感官不同,及以太旋涡的尺度不同--一是分子层次,一是电子以下层次,可以作一个对比:
电解液电池阴阳两极--电容正负两极
电解质分子以太旋涡--电容内表面以太湍流与微旋涡
分子以太旋涡解体/结合产生振动(电)--以太微旋涡解体产生振动(电)
以石墨-锌干电池为例,人们一般观念中,化学电池放电时的电流是从阳极流出,从阴极流入,这仍是经典电子迁移理论下的错误认知。场景并不如此。
在电路中,电场是从阳极开始,直到用阴极结束。而在电池内部,电场是从阴极开始,直到阳极结束。阳极只是作为电解液中最不活跃的端点,能与活跃的阴极形成电解液内部的阴极——>阳极的电场,类似于PN结。如此形成一个单向的电场传递通道,于是能约束阴极化学反应产生的振动波定向往阳极传递,最后沿导线输向用电器。
阴极锌片与电解液相互化学反应后,反应表面产生振动波,振动波被电场约束单向传递,表达为电。因此在这种化学电池的阴阳两极中,相对活跃的元素是作为阴极端存在的,相对不活跃或惰性的元素是作为阳极端存在的,如锌—石墨电池,锌——铜电池,均是锌的活跃性高而成为阴极。整个干电池中,相对活跃的元素作为阴极的同时,也是作为能量源存在。