分子化学属性与红外辐射

曾在“原子化学属性”小节通过电子连珠导致原子以太旋涡的偏向形变来说明原子化学属性的内在机制,这里分子化学属性的有相类似的内在机制,是源于分子内部多原子互绕导致外围次生以太旋涡的周期性偏向形变。

在一个长时段内,分子以太旋涡由于内部多原子耦合互绕,会以互绕中心为涡心,对外界表现出复杂的空间结构形变,这个形变还杂合了内部原子以太旋涡的电子连珠偏向作用,从而能对周边产生力的作用。这个力的作用,对周边空间以太表现出振动波传递;对周边其它微观旋涡表现出涡流的合流与对冲作用,从而产生化学反应或物理作用。

由于次生以太旋涡的偏向,在频率、强度方面远较原子以太旋涡的偏向要小,于是这种偏向一般产生偏红外辐射,这是一般物体都会产生红外线的原因。同时这种偏向也会与相同周期的入射红外线产生干涉,表现为红外吸收。

这其实是分子发射光谱与吸收光谱现象。如CO2气体就有很强吸收红外线的作用,即源于这种周期性次生以太旋涡的偏向干涉。但这种分子以太旋涡周期性的偏向远较原子以太旋涡电子连珠下的偏向要复杂,表现出有更多的谱线。

比如对于某个双原子结构的分子来说,设其双原子的谱线数分别是15条与31条,那么这个分子的谱线数就有C(1,15)*C(1,31)=465条之多,且谱线之间会出现接近重叠现象,要是更多原子结构下的分子的谱线数,将会是一个巨大的数字,这远超出人们仪器的分辩能力,因此没有必要特别研究,但要认识到这种振动波存在及成因。

次生以太旋涡的涡流偏向作用,则表现为溶解析出作用、酸碱性、氧化性、腐蚀性等等常见化学属性。

分子化学属性与红外辐射,是分子以太旋涡内部的原子互绕作用后,分别产生的流体作用结果与波动作用结果,是一体两面。