由于以太旋涡结构形态的存在,旋涡间的耦合现象在时空各个尺度都存在。
在微观原子层次上,主要过程是两个或多个原子以太旋涡由于涡管相吸,而出现互绕或同轴旋转结构形态,带动外沿空间以太形成次生以太涡流,包裹两个或多个原子以太旋涡,形成新的多原子以太旋涡结构,即分子以太旋涡。并应次生以太旋涡流的偏向作用,表现出某类特定的化学属性。这是以太旋涡理论下的化学理论核心描述。
这是一种全新的化学思想。
原子以太旋涡的耦合分两种基础形态:
相反旋转方向的两个原子以太旋涡出现同向的涡管相吸,为异旋同极吸附结构
相同旋转方向的两个原子以太旋涡出现反向的涡管相吸,为同旋异极吸附结构
异旋同极吸附结构,一般存在于气体双原子结构的分子。当吸引力与向心力相等时,双原子以太旋涡互绕达到稳定状态,而两原子以太旋涡的外围以太流,形成次生以太旋涡,包裹内部的两个原子以太旋涡,表现为双原子的分子结构。
同旋异极吸附结构,一般存在于固体、液体多原子结构的分子,多原子两极首尾相连,表现为多原子结构稳定,而次生以太旋涡强。
同旋异极吸附结构与异旋同极吸附结构存在于大部分物体中,相互交叉吸引链接,产生复杂原子以太旋涡空间结构体。两者之间力的对比及与空间环境的作用,产生宏观物体的气、液、固三态结构,会在“物体结构物理”章节中说明。
在微观层次的两个或多个原子以太旋涡相互耦合,形成分子如H2O,CaCO3等等化学分子,而这个分子结构对外作用是通过次生以太旋涡流的力场作用来表现,于是原有的元素原子以太旋涡的力场特征被掩盖、屏蔽或禁锢,表现为原子的许多特定属性在化合后消失,并有新的属性出现,比如有毒变成无毒,酸性变成中性,固体变成液体、液体变气体等等。
次生以太旋涡流如蛋壳保护双蛋黄一样,屏蔽内部以太旋涡的振动与运动形态,于是有更低的角动量流失状态,从而让内部原子以太旋涡的运动保持稳定状态。
注:异旋同极吸附结构形态与同旋异极吸附结构形态是普遍存在于各类物质之中的,为描绘方便,这里一般只用异旋同极吸附结构形态来图示,同旋异极吸附结构形态的作用是类似的。