燃烧与水分子结构考查

水是构成地球生命的最重要物质,也是化学实验中一种最重要的溶液溶剂,根据上面介绍的耦合原理,专门作一个水分子结构诞生与运动形态方面的考查,以期给其它分子结构及运动形态作一个参考。

通过经典化学理论中的水分子模型,人们直观了解了水分子的结构,但这个模型是一种静态结构,让人们以为氧原子核与氢原子核之间就是如模型一样固化结构存在。通过“化学的几个问题”章节中对共用电子的否定,可知这是一种错误模型。

实际是水分子在高速旋转中,所有物体内的原子分子都在旋转中,而不是一种静态结构存在。这里通过氧气、氢气燃烧描绘,来解析以太旋涡理论下的动态水分子结构模型。

燃烧

在“原子活跃性”小节中提到氧原子归类于“连珠频率高,偏向大,角动量低”的微观以太旋涡,因此表现出很活跃的化学属性;而氢原子则是“连珠频率低,偏向低,角动量低”的微观以太旋涡,很容易被其它角动量高的微观以太旋涡捕获。两种气体分子因化学作用而分解,继而化合成水分子,是一种最常见物质存在。

氢氧燃烧的化学公式2H2+O2=2H2O,实际包含整个气体分子分裂与聚合的动态过程,但过于简要,不能让人们直观理解微观原子层次的物质作用的实质。

由于初始的氢气在氧气中的点火,产生强烈振动波,这股外来振动导致部分氧、氢分子以太旋涡耦合结构被破坏,产生游离的氧、氢原子以太旋涡,同时氧、氢分子以太旋涡解体后冲击周边以太,产生新的振动波,表现为燃烧时火焰的内焰及发光。这里包含的化学公式是:

O2+振动波=O+O

H2+振动波=H+H

游离的氧、氢原子因振动波辐射后,所处空间以太振动强度变弱,于是能相互耦合成为OH次生以太旋涡,OH次生以太旋涡再与游离的H以太旋涡聚合,这两次结合过程也产生新的振动波,表现为燃烧时火焰的外焰及发光。这里包含的化学公式是:

H+O=OH+振动波

OH+H=H2O+振动波

游离的氧原子以太旋涡与氢原子以太旋涡因受激振动强化电子连珠的偏向结构,表现为发射特征光谱。

这分裂与聚合产生的两股新振动波,再次导致其它氧、氢分子以太旋涡耦合结构被破坏,如此反复循环,直到最后所有氧、氢分子结构都被破坏并聚合成水分子次生以太旋涡,振动波衰减而不能影响剩余的氧分子或氢分子,表现为火焰熄灭。

这是一个分子层次的振动波链式破坏反应过程,与中子(波)导致原子核裂变的链式反应有相类似的描绘--都是波对旋涡结构的分裂,在分裂过程中产生新的波,反复循环,只是时空层次不同。

其它如火烛燃烧、木材燃烧等等人们习以为常的现象的物质作用过程,都与这氢氧燃烧有相同分子层次的分裂与聚合机理,只是参与的物质不同有更复杂的物质结构变化与光谱辐射现象。

O-H聚合

燃烧过程产生游离的氧、氢原子以太旋涡。氧原子以太旋涡比氢原子以太旋涡有更高角动量,于是在运动中能占主导地位,表现为氧原子与氢原子产生耦合结构后,氢原子就如宇宙中一颗伴星围绕一颗恒星公转一样,围绕氧原子公转,两者互绕后产生的次生以太旋涡方向与氧原子以太旋涡方向一致,这就是水分子的OH结构形态。

H-OH聚合

而OH次生以太旋涡再与游离的氢原子H以太旋涡通过范德华力结合并互绕,形成次次生以太旋涡,即水分子H-OH以太旋涡。水分子以太旋涡之间再通过范德华力相互结合,形成宏观水体结构。

这个水分子结构模型,是一个多旋涡契套空间互绕结构,在不停地旋转中,空间结构应内部各层次以太旋涡的方位不同,在时刻变化,是一个动态模型。其它多原子以太旋涡结合成的分子以太旋涡结构的考查,可以参考这一过程描绘来理解。

在整个氧、氢原子以太旋涡的化合过程中,氧原子O以太旋涡有最高的偏向振动形态,与旋涡方向相反的氢原子H结合后,产生的耦合互绕结构即OH次生以太旋涡,处于中等程度的偏向振动形态,而OH次生以太旋涡与旋涡方向相反的氢原子H结合后,产生的H-OH互绕旋涡结构即水分子有最低程度的偏向振动形态,于是人们观察到中性的水。

OH结构是通过耦合结构结合的,而H-OH互绕结构是通过范德华力结合的,因此OH结构比H-OH结构有更高的稳定性,当受到外界光声电及各类化学作用,H-OH结构很容易分离,成为游离态-H、-OH,从而表现出酸性、碱性。