电子双缝干涉实验

认识到发射电极表面振动作用与以太湍流的一般分布形态,就可以重新考查著名的“电子双缝干涉实验”的过程与结论。

电子双缝干涉实验,“证明”了粒子具有波动性,从而诞生了“物质波”这一玄幻的概念,及为后来的量子理论提供实验上的“支持”。物质波概念已经在上面“物质波成因”小节解析,本质是波运动借粒子表达出来。由于上面小节采用的电子为代表的粒子概念是有普适性,而“电子双缝干涉实验”中所谓的“电子”与普适性概念下的电子、微观粒子略有不同,因此这里专门就“电子双缝干涉实验”开一个小节,来分析这一实验下的人们到底发现了什么。

电子双缝干涉实验,其一般构架是发射电极通电后产生“电子”,无论是“电子束”,还是“一个电子”,通过双缝后都能在背景胶片上留下干涉条纹,被传为惊奇实验发现,成为物理史上的经典实验之一。由于实验室的人们直至现在都没有“电的本质是导体内的以太振动波”,“导体的材料构架是微观原子以太旋涡的堆积体”,及“实验室的空间是以太空间”这种更符合客观的认识,因此依赖于经典物理理论认识的这一电子双缝干涉实验的结果分析,也是不能有正确的分析过程与合乎客观的结论。

这里用以太旋涡理论来分析这一实验过程:

这个实验开始后,发射电极表面在电振动波作用下产生强烈振动,从而在以太空间里发生振动能量传递与以太涡旋、湍流,振动能量与以太涡旋、湍流受外加电场E约束沿电场方向作定向运动,整体表达为阴极射线。阴极射线,是以太涡旋、湍流与振动波的波流一体。这以太涡旋、湍流被探测到,被实验室的人们误判为电子。应以太涡旋的涡流方向与外来垂直电场、磁场的涡流方向产生对冲作用,于是这阴极射线能在垂直电场与磁场中偏向。

这阴极射线的振动波通过双缝时,由于双缝空间表面原子以太旋涡的涡流牵引拖曳作用,产生衍射现象,在双缝另一侧产生衍射波的干涉,这干涉作用在以太空间形成干涉栏栅,反过来制约穿过双缝的以太涡旋的空间分布形态,使之运动方向在干涉栏栅影响下具有有序性,从而在背景胶片上留下干涉条纹。

这里的干涉条纹,是电振动波在以太空间里的振动传递借以太涡旋表达出来。与“物质波”小节中提到的粒子前进时产生的波动借粒子表达出来略有区别,但核心表述是一样的:干涉条纹,首先是波的干涉,然后借各种载体表达出来,而非科学界以为的粒子本身具有波动性。

“电子双缝干涉实验”曾有过夸张的实验描绘:“1974年,皮尔·梅利(Pier Merli) ,在米兰大学的物理实验室里,成功的将电子一粒一粒的发射出来。在探测屏上,他也明确地观察到干涉现象”。就算按当下经典物理的原子结构模型来说,人类根本不可能实现“将电子一粒一粒的发射出来”这么一个实验构想。在于当下最高端的隧道扫描显微镜也才勉强捕捉到原子表面信息,更不用说“掌控”比原子还要小亿万倍的原子核,而电子质量又还是质子质量的1836分之一(注),说“电子一粒一粒的发射出来”,是根本不可能的事,当然实验室的人们可以自认为有这个能力。因此说这种表述,是不尊重客观事实且还是有悖于理论的极不科学的表述,虽然这个理论也是错的。自然,实验过程的人们必观察到某种类似于“电子一粒一粒的发射”的场景,才会在错误的理论指导下,将这种场景当成“电子一粒一粒的发射出来”的场景。比如将阴极射线的一个一个的脉冲信号当成“一粒一粒的电子”,而这种阴极射线无论是脉冲的还是连续的,都首先是波,然后承载以太涡旋,于是一个一个的脉冲信号通过双缝后的分布形态必是波干涉显像,这才是真实的实验情况。

双缝干涉实验还有一种构架是采光波来做,在西方科学界认识不到光是以太纵波的前提下,采用“光子”概念来理解实验过程,也是不能得出正确的实验判定。同样实验中所谓的“一个一个光子”也是夸张表述:人类根本没有能力掌控“一个光子”这种存在,而是将一个光脉冲信号当成“一个光子”代入实验。以电子、光的双缝干涉实验为基础的量子概念与理论,自然不会是一个正确科学构建。会在后面“意识的世界”章节专门分析量子成因及量子思想。

(注),当下的原子核与原子直径数据尺度是原子直径的数量级大约是10-10m,原子核的直径一般为10-15m ,二者差了10的5次方,体积之差则在10的15次方。由于原子核与电子在以太旋涡理论下有新的结构模型,这里引用这些数据,只为检验这种实验表述与其采用的理论是自相矛盾的,不代表作者认同这些数据的准确性。