水波场涡

水波更为常见,并在实验中可以简单地通过振子打击水面而产生。物理界对水波的研究几近是“透彻”,因此经典物理断然不会去重新解构水波的另外作用形态。由于认识不到以太的存在,经典物理的这种水波研究,其实也是没有究其根本。

这里以实验室中振子周期性拍击水面产生水波纹,再通过场涡形态来描绘水波的内部新的运动空间结构形态。

当振子在簧片的周期性带动下,一圈圈水波纹立马显现出来。当振子第一次拍打水体时,在振子尖端周边,由于物质间的相互作用,在水体内部产生一种全方位压力F。这个压力向水体扩散,表现为波动,在传递过程中在各个时空层次产生无数的场涡。

对于水体表面,由于压力向上扩散受阻,波动形成的场涡导致水体表面隆起,于是人们看到弧形的水波峰出现。而这个水体表面场涡是背离振子方向的,于是形成以振子为中心向四周扩散的弧形波峰。场涡,如一个车轮,向外翻滚而去,不断抬升表面水体,形成水波。

振子每拍打一次水体,就产生一次场涡运动,场涡不断向外扩散,于是形成一圈圈的水波。场涡传递过程,波动以场涡涡心为中心向四方扩散,从而形成更多场涡及更大的作用范围,表现为随着水波的传递,越外围的水波有更长的波弧,也即水波波长变长。这就是宇空红移现象中能量滞留在媒介以太后,光波波长变长的内在物质作用机制。

红移,其实是每个波内的场涡的作用范围在传递过程中逐渐变大所致。

经典物理理论只知红移是波动能量滞留在媒介里而衰减后导致的波长变长现象,但不知道这个能量滞留与这个波长变长之间的物质作用联系,这里通过水波场涡论述来大略描绘一下。

而对于水体内部,由于场涡的传递速度远大于水波的速度,在振子连续拍打水体后,形成的场涡充满整个水体空间。而场涡之间的扩散被相互约束,形成又振子拍打频率为间隔的栅栏状分布,被人类仪器探测到作用强度后,形成波峰与波谷的概念。