涌峰场涡

在日常生活中,喷泉的水流自底部向上喷涌而出,会形成一个稳定的水峰,即涌峰。可以通过场涡的传递机理来描绘这一形态的形成。

水流自底部向上喷涌而出,水分子之间形成自下向上的推动力,产生内压,带来波动以比水流更快的速度在水分子之间传递,这是涌峰内部的波流一体,在传递路径两侧形成多个场涡,这些场涡在高度方向上持续叠加,最终形态一个复杂的场涡分布形态,场涡牵引以太形成以太旋涡,后约束水分子,表现涌峰内部场涡。

当水体上升到某种高度,与重力达到平衡,水体表面受重力作用开始显像,形成向下流动趋向,表现为涌峰外表场涡,牵引水体表面以太向下扩散,并带动水体向下,最终形成一个稳定的涌峰静态。

这是平面二维空间结构下的涌峰场涡形态示意图,与传统流体力学分析的结果不同。

而在立体三维空间结构下,场涡间相互干扰作用,牵引而成的以太旋涡相互吸引与排斥,出现轴纠正运动,类似于进动,达到平衡时,会形成以涌峰中心轴为轴心的螺旋上升形态,再沿涌峰表面向下疏导,在涌峰表面与涌峰中心之间,存在一个平衡面,平衡面两侧的场涡整体方向是相反的。

这个水体场涡的相互融合,是涌峰版的盘古开天。

同时,由于涌峰场涡在水峰中心轴空间形成一个以太旋涡,于是涌峰结构涡轴处的水底振动波,可以几无阻碍地从水底沿着以太旋涡的涡轴传递到涌峰的峰顶,并向上发射或发散出去,即为轴辐射。这其实也与地球两极极光的发射原理是完全一样的,都是由于涡轴处少有干扰而让振动波顺利通过。涌峰结构也是金字塔的形变结构,会在下面的“金字塔的奥秘”专门说明这种轴辐射的形态。

自然,因科学界没有“场涡运动”这种认识,对于这种涌峰结构下的轴辐射也是认识不到的。若有类似于麦克风的振动波接收仪器靠近这种涌峰的峰顶,就能直接感受到这种振动波的振动作用。

万物的物质运动形态是全息的,体现在各个时空尺度里。

从俯视角度看涌峰场涡形态,这与上面描绘的行星空间的以太涡流吸入与排出形态很相似。只是由于元素原子成分与物质结构的区别,从而有不同的形变这种表象,而纠其核心运动形态,则都是一样的运动机理。

地球空间场涡

地核振动继续传递到大气层外,对地球周边空间处的以太牵引,形成场涡与微以太旋涡,微以太旋涡相互聚合,最终形成地球以太旋涡,被人们借仪器检测到这个以太旋涡的力场作用梯度分布,即为地球磁场。

其它恒星、行星及微观的原子、电子周边空间的场涡皆是相似形态,只是时空尺度的不同。

由于受太阳场涡的干扰,地球空间场涡运动形态会发生形变,即当下人们观察到的地球磁场分布形态。

地壳场涡印迹之各种奇特地理景观

场涡在地壳中运行,虽然是一个动态不可见的运动形态,但会通过物质空间结构而留下印迹。这里例举一些奇特地自然景观来展现场涡的对地貌的影响。

撒哈拉之眼

让人叹为观止的“撒哈拉之眼”,被称为“理查特结构”,就是一起地壳场涡导致熔浆形成旋涡形态后凝固而成的地质结构。

当一个地质结构如一个椭圆形时,振动波会在这个椭圆弧边缘不断反射,最终反射波会在椭圆的中心某处形成一个场涡运动形态,这个场涡会牵引圆内区域内的以太形成以太旋涡,以太旋涡又携带原子以太旋涡形成物质旋涡结构。当这个椭圆结构有液体涌动时,液体流就会产生旋涡运动。

察看撒哈拉之眼的外围地质结构,恰好是一个近椭圆形的地貌,并通过岩石形态是一个熔浆凝固结构,可知这个地方曾有熔浆涌动,在场涡与以太旋涡的作用下,熔浆在凝固之前形成熔浆旋涡,凝固后能形成一个“理查特结构”地貌。

生活人们若将浓稠的热芝麻糖浆放在杯子里搅拌并慢慢冷却凝固后,也会形成这么一种旋涡形态的“理查特结构”。

再加一张“撒哈拉之眼”的近貌图,让人感叹大自然的鬼斧神工。

塔里木盆地沙印

塔里木盆地也是一个椭圆形地质结构,周边的山脉对盆地内的波有反射作用,因此存在一个场涡。由于塔里木盆地是一个沙漠环境,场涡的印迹效果不明显,但人们可以通过卫星图片,仍可以看到盆地中心的沙浪波纹有别于盆地外围的沙浪波纹。

冰圈

冰圈是一种奇特的结冰现象。冰圈也是场涡作用的物质结构形态,是场涡作用于液态水后,水形成漩涡而凝固而成。生活中,在圆形盆里停水搅动脸盆里的水,也可以很快看到水形成漩涡态,凝固后就是所谓的冰圈。

冰圈,是“理查特结构”的水凝固版。

地表场涡的形态分布很广,从大山到平原,从深谷到大海都存在各种尺度强度的场涡,人们给予各种名称如地陷、水漩涡、气穴、海眼、龙脉等等,这些场涡会产生不同的感官反应,在人们认识不到其实质之前,被归于神秘、玄学等等,会在后面章节陆续解析说明。

地壳场涡之地陷

地壳以固体形式存在,与石头内的场涡结构形态一样,因此就不再详细描绘,这里专门说一下地壳现象--地陷的成因。

地陷,被解释为地下空间抽空后而塌陷,地下水减少,导致地下空间出现空洞,不能支撑上层物质重量,于是发生塌陷,这个解说能解释地陷的大部分现象,唯一的问题是不能解释地陷形成的圆形或椭圆形的结构。

认识到场涡的存在,就可用场涡来这个主要形态来解释地陷成因。

地陷是地壳场涡形成以太涡管对地壳结构的切割破坏,就如龙卷风在空气中构建出一个漏斗形态的空气涡管,地壳场涡在流转过程中,也会牵引地壳以太形成以太涡管,以太涡管会暂时切断或减弱其空间内物质元素原子以太旋涡与外界地壳其它原子以太旋涡之间的电荷联系,若空间内物质原子以太旋涡之下存在空洞,涡管内的物质在重力作用下而下沉或坠落,形成椭圆形的坑,即地陷。

地下空间没有支撑,是地陷形成的必要因素。

地幔场涡探究

地核原子核聚变振动波继续传递到地幔,在地幔-地壳接触面部分波反射形成循环振动传递,形成地幔场涡。

地球有地核,时刻发生核聚变,核聚变时刻在产生强烈振动能量,能量导致地球地幔熔化变成液体态,地幔表面因温度流失过快而凝固形成地壳。在地球内部,地心振动波除了在地壳内表面反射之外,还在地幔形成大场涡,这个场涡是一个有源场涡结构。

当然地幔场涡并一定是这么八个次级场涡形态,有可能是四个或五个或六次级场涡形态,这依赖于人们的继续研究。

地核结构探究

考虑到地核核聚变释放的能量极高,地幔岩浆的广泛分布,及当下人类的核聚变构架都经不起高温腐蚀,因此,可以推断在地核场涡的涡心处,是一种类金属液体形态的物质结构,而非人们当下认为的铁核固体,在于核聚变的超高温,会熔化哪怕熔点更高的元素物质,而后才是硬铁核,再是地幔,后是地壳。地心类金属液体物质通过融圆过程形成液态球形结构。

同时受地转自转的离心力影响,这个硬铁核心会出桃核一样中间大,两头尖的纺锤形。

如此地球结构,纵向剖面就是一个桃子的剖面。地核是硬铁,硬铁的中心是一个空腔,含有类金属液态物质,如一个桃核。同时以太涡管会在地球南北极与地核之间形成一条通道。地核聚变能量振动从通道方向无阻碍的逸出,与南北极地表上方的空气作用,产生美丽的极光。

地核中心的这种类金属液态结构,对各个时空尺度的以太旋涡涡心结构都是相近的,如行星、恒星、原子核、电子核的中心结构,具体结构形态会应各以太旋涡涡心的振动强度不同有有差异。人类现代科技水平自然无法通过观测来验证这种结构,但仍可以在正确原子以太旋涡模型基础上,通过物质平衡作用的方式演义,来认识这一结构。通过全息方式也可以来确认存在这种结构形态,如上面类比的桃核结构,甚至人体骨骼包裹骨髓也是相近结构,在于其成形机制都是一样的。会在本章节后面解析全息原理。

更微观的以太旋涡以离心机轻重梯度分布的形式,向中心聚集,再经过铁原子以太旋涡之间的空隙流入空腔之内,聚合成元素原子,先合成为大一层次的微观以太旋涡,再合成为人类可探测的电子、质子,后继续合成为更高的元素原子,直到铁原子。由于受铁原子之间环形振动产生的以太喷流相互排斥,铁原子之间被相互隔离,停止聚变,直到有更高的能量作用比如超新星爆发来克服这个排斥作用。整个聚变期间释放出巨量聚变能量,融化地幔,以太喷流驱动地球自转,并带来一系列的地球时空内的物质运动。(注)

注:为方便作图描绘,除了这一小节特别说明地核结构之外,其余章节关于地核的描绘,仍是以球形结构展开。

地核场涡探究

当下人类已经考察地球结构主要由地壳、地幔、地核组成,同时相信地核主要由铁成分组成,地球磁场源于地核带有磁场,就如磁铁带有磁场。但地核如何产生磁场,则是不明就里。

磁铁磁场的成因在前面章节已经描绘,源于铁原子以太旋涡间的环形振动产生的以太涡形喷流,环绕在磁铁周边空间,后被仪器检测到这个以太涡流的力场梯度分布而定义。地核就是一块放大版的磁铁,地核磁场也是地核铁原子以太旋涡间的环形振动产生的以太涡流的力场在地球整个空间的梯度分布。

地核除了铁原子以太旋涡作环形振动之外,地核内铁原子以下层次的以太旋涡间在发生核聚变反应,产生的振动在地核内部折射与内表面反射,形成地核场涡。需要说明的一点是,地核内的核聚变是包含人类已知的氢原子之间的核聚变,但还有更低时空尺度的以太旋涡,甚至比电子还要更微观的以太旋涡之间的聚变,统称核聚变。

由于地核空间巨大,各微观以太旋涡之间的核聚变活动时刻在进行,产生的振动在地核内部形成场涡后,对地核空间结构的融圆过程也极长,于是地核场涡形态,就是由众多次级场涡围绕一个中心的流转形态,同时牵引以太产生与场涡方向一致的地核以太旋涡。

次级场涡的数量与分布范围,由核聚变的强度、地核的成分体积、地球在太阳系的位置等等因素决定。

象一个桔子瓣

雪花之六角结构成因

雪花是漂亮的六角形水汽结晶体,司空见惯。由于科学界并没有认识到场涡及原子以太旋涡结构。也认识不到物质的各分子成分是原子以太旋涡耦合结构,在微观区域,仍存在高速旋转的以太旋涡,众多水分子因范德华力聚在一起形成水分子团,水分子团同样在旋转中,内部是波流一体状态。因此对雪花的形成过程处于不求甚解状态,这里用场涡运动来描绘这一过程。

在冬天的高空中,水汽在低温冷空气作用下开始凝结,水汽凝结时,产生空气的低压空泡,空泡外沿冷空气高速来填充,空气相向运动形成振动波,振动波在局部区域转化为场涡,场涡牵引以太形成旋涡,以太旋涡携带空气分子形成微气旋,微气旋带动水汽分子作高速圆周运动,如一个微型台风。

这一过程中,水汽分子先是凝结成微水珠,微水珠之中存在波流一体,振动波在高速旋转的微水滴内反射,形成六角形反射状态的契合波,约束水滴形成六角形。当水滴凝结后,就形成六角冰晶,即水的结晶体。

六角冰晶在坠入过程中,慢慢吸附更多细微水珠,通过结晶原理,形成宏观的六角形雪花冰棱。在冬天,若水汽过大,六角冰晶在坠落过程中不断翻滚,快速吸附更多更多的细微水珠,则形成球形的“霰”,俗称雪子。由于高空中水汽在下雪天饱和度最高,因此雪子通常都出现在下雪天前期。若在夏天,高空水汽接近最饱和,六角冰晶在坠落过程中不断翻滚,吸附更多更多的细微水珠,则形成球形冰雹。冰雹,其实就是大的雪子。

高空中低压空泡中的细微水珠运动状态与土星北极旋涡的运动状态,有相同的波体一体传递模式,除了两点差异:一是尺度不同:一是宇观一是微观;二承载物质不同:一是土星大气,一是水流体,因此两者都显现出相同的结构:六角形态。

表面张力之否定

曾在“星体球形结构”小节中,为简单描绘星球成为球形的原因,引用经典物理学的“表面张力”这一概念来说明星球高温液体球,这里是否定“表面张力”这个概念。

表面张力在经典物理理论中,大略是指“由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。这种情况使流体的表面好象蒙在一个表面积比它大的固体外面的弹性薄膜。”物理界还将毛细管现象、水珠球形态等原因归结于表面张力。

这个解释其实停留在范德华力的层次上,即液体内侧的其它分子的范德华力作用,形成指向液体内部的合力,产生吸引作用,而使边界处的分子形成向内运动趋势,而边界内的分子之间又相互通过范德华力作用相互吸引,就有了如货车挂网罩一样边界分子层罩住内部液体分子,表现为边界层分子整体结构看上去如一个弹性薄膜。

但懂得牛顿定律的读者都知道,力是相互作用的,“指向液体内部的合力”只存在于最表层的分子,液体内部分子合力是0,因此整个液体表面,按经典物理理论中的定性,是被薄到只有1、2个分子厚的弹性薄膜所约束,显然这种约束力远远不够去保持液体的形态,特别是球形水珠结构。

通过前面章节关于分子范德华力的重新定性,及上面波流一体与场涡的认识,可以确定不存在表面张力这一作用。

振动波在液体内传递,产生场涡作用,用仪器检测表现为压力。这个场涡牵引的以太涡流延伸到液体最表层分子,让液体表层分子间出现分离倾向,但分子间又因范德华力而结合,当场涡作用与范德华力取得作用平衡,于是液体表面分子之间处于欲断不断的绷紧状态,被人们误认为是表面张力。这种“表面张力”其实是“表面被迫张力”。

通过场涡与范德华力的平衡作用描绘,可知表面张力,其实是物质作用的结果现象,而不是物质状态的成因。物理界对表面张力的认识,是又一个将结果现象当成事件成因的本末倒置的案例。

这里也可用经典物理来重新理解“表现张力”这一过程,这与气球充满气后,表面出现拉紧原理一致:气体内压向外突破受阻,导致气球的橡胶薄膜分子受力后,分子之间处于相互分离张开但又没有断开的绷紧状态,这是一种物质作用的结果现象。对于液体,只是液体内的波振动压力,取代气球内的气体压力而已。充气的气球与融圆的水珠最后都呈现出球形结构,在于两者内部有完全一样的物质作用机理。

日常生活中锅里烧开水,就是锅底热振动导致水体沸腾,不断翻滚,这是水面表面被撕裂的另一种说法,附带产生漩涡、湍流及蒸汽现象。而平静液体里的场涡,与水分子间的范德华力取得平衡,只表现为液体表面出现分裂趋势,被人们误认为存在“表面张力”。人们提出表面张力这个概念,是停留在表面观察的结果,更是没有正确原子结构理论指导的结果。

这里重新认识星球成为一个球形的物质作用机制:是地球内部的地核这个有源场涡导致的地幔高温熔浆融圆过程后的圆满状态。

肥皂泡之波流一体

大气旋涡,是气体不被约束,而后又受地球重力影响而展现的圆满状态。若气体被约束,又能自由流动,也会展现出圆满状态,这就是以飘浮的肥皂泡为代表的气体球。

肥皂泡形成球状结构,与水珠形成球状结构原理完全一致,只是承载的分子以太旋涡不同。这里是空气被水膜约束后,内部波振动在水膜内表面持续反射,形成无数场涡与以太旋涡,带动空气分子不断调整分布,表达为融圆过程。最终形成大场涡与大旋涡,导致内部空气分子分布形态为球形结构,表现为圆满状态。这一描绘可参考水珠的融圆过程与圆满状态。

肥皂泡表面水膜处于绷紧状态被理解为表面张力作用也是错的。

薄薄的水膜包裹着空气球,这与大气层包裹着地幔液态熔岩,两者几乎有一致的运动结构形态:都是薄薄的流体膜包裹着流体球。肥皂泡表面薄膜的流转形态与大气层的流转形态非常相似。

将肥皂泡放大到地球尺度,表面薄膜就是一个大气层,通过肥皂泡表面水膜的整体流动形态,可以模拟地球大气层的整体流动形态,以展现地球各表面区域大气的相互作用与联动过程。

本章节的上面内容,用石头、水珠、大气涡旋与肥皂泡分别来说明固体、液体、气体的场涡及旋涡的波流一体形态。更复杂更细微的波流一体形态描绘依赖人们的深入研究。

万物结构都是波流一体,应万物结构不同,有不同的波流一体过程形态,而不同的波流一体过程形态又展现出不同的万物结构,两者相互相承。

大气涡旋之波流一体

气体作为物质结构形态之一,也存在融圆过程与圆满状态。由于气体分子以太旋涡间的范德华力远小于液体及固体分子以太旋涡间的范德华力,因此有略微差别的融圆过程与圆满状态。

气体分子以太旋涡间的范德华力相对要小很多,于是地球表面的以太场涡与旋涡形成后,带动气体分子以太旋涡在以太旋涡上随波逐流的效果也最明显,表现为稍有挠动,气体立马产生涡旋现象。

涡旋现象就是气体融圆过程的展现。

大气涡旋,就是一个常见的水汽现象,在卫星云图上的高纬度区域经常可以看到,是空气中的场涡导致地球表面以太湍流形成以太涡旋,再牵引气体分子以太放涡与水汽分子以太旋涡作涡旋运动。

同样,气体分子以太旋涡间的范德华力相对过小,导致场涡的融圆过程很容易被打破,从而出现紊流乱流现象。紊流乱流是下一时空尺度的融圆过程。

虽然如此,但只要条件具备,比如外界振动波的持续呈场涡态传入,没有其它气流的强力干扰,某个区域的气体仍达到圆满状态,那就是台风、龙卷风为代表的大气旋涡,另外如飞机穿过云雾产生的涡旋气流,也是非常直观。台风、龙卷风的形态很常见,就不再继续描绘,只是人们观察的同时,要代入场涡与以太旋涡,以理解其内在的真正运动形态,而不是停留在光与影的表面及分子时空尺度。

圆满状态

水珠最后变成球形态,内部大场涡与大旋涡波流一体,两个涡心保持长时间重合,这个状态称为圆满状态。

场涡是融圆过程中的旋涡运动,旋涡是圆满状态下的场涡运动。

这就是水珠悬浮后变成球形后的内在物质作用机理,而非物理界说的表面张力。表面张力与球形态,都是一种结果现象。人们观察实验现象,常将结果现象当成事件成因来理解,是一种错误认知方式。会在后面章节论述表面张力是一个错误认识。

想象用比当下最快速度还要快一百万倍的高速摄像机,将水珠这个融圆过程拍下来,再以一年一帧的速度播放,那人们就观察到一块透明石头的动态变化过程。反过来,石头的场涡导致石头空间内的物质分布趋向圆满的球形态,若将这个融圆过程加快亿万倍,人们会看到一颗浑浊水滴的动态变化过程。

两者变化过程只是时空尺度的区别,而在人们观察的角度则区分为不同,一是水滴融圆过程,几秒钟就结束并形成圆满状态,一是石头融圆过程,则要亿万年才能形成圆满状态。对于宇宙来说,人类定义的几秒钟与亿万年,都是一刹那。站在人的角度,两者跨度则是天差地别,这只是人的感觉。

当然这两者变化过程的时间巨大差异性并不是必然的。

升温,可以加快石头的融圆过程。石头的高温岩浆态形成球形滴的融圆过程,就是一个与水珠接近快的变化过程。而降温,则可以减慢水珠的融圆过程。比如水珠的固体态,也就是冰块,就是一个与石头接近慢的变化过程。

固态与液态,就当下人们的物理认识,只是分子热运动程度与分子间范德华力对比后的不同结构体现,温度变化可以让同一物质结构在固体、液体与气体之间相互转化,因此只有量的区别,结合上面描绘可以推广一个判定:

万物都存在融圆过程与圆满状态

这里要着重说明一点的是,融合,不等于消失,而是一个小场涡-小旋涡以圆满地状态,加入到一个大场涡-大旋涡的振动-涡流轨道上,大小场涡之间不再以对抗相冲的局面存在,而是相互平衡的形态存在。

这其实也是一个星系、恒星系、原子空间的场涡示意图。万物是全息的,体现在各个时空尺度。

水珠之波流一体·融圆

拿石头举例,通过波向内收敛呈螺旋状形态的循环振动传递模式,就可简单描绘场涡的形成机理,这是牛顿力学可理解的范畴。

但人们会很难想象石头内场涡驱使以太形成旋涡,及以太旋涡牵引石头原子的场景,在于“石头内存在旋涡”的流动场景描绘与“石头是固体形态,形状不会发生变化”的不动场景观念格格不入。

“石头是固体形态,形状不会发生变化”,是一种错觉,是石头众多原子以太旋涡的空间位置变化过于细微而给意识带来的“不变”的感觉。其实人们都知道任何物体内的原子都在作热运动,而运动首先是位置随时间变化。只要位置发生变化,哪怕是再轻微,放在几十亿几百亿年宇宙长时间跨度的积累下,石头会如水珠一样,发生形变。

水珠从不规则形态变化到球形可以在短时间内展现这种过程。场涡导致石头的形变与水珠的形变,只是慢播镜头与快播镜头的区别。

水珠受物质作用从水体分离瞬间,悬浮在空中,其内部水分子受物质作用,会如石头内部一样,存在各个时空尺度的场涡,场涡同时在水珠空间内产生以太旋涡,以太旋涡再带动水分子作涡旋运动及涡旋运动趋向。

以太旋涡分布在水珠空间,会牵引水分子作圆周运动,这是水分子在随波逐流。水珠表面区域的以太旋涡,约束水分子呈圆周运动与分布,宏观上表现为水珠表面变为球面形态,无数的以太旋涡相互累加聚集,在水珠表面表现为各种球面形态相互衔接,于是水珠表面呈曲面形态。

这是一个动态过程,人们看到的是水珠的结构在不断形变扭曲。

物理界会用内压变化来说明这一过程。但压力是仪器参与检测后信号体现,是一种结果现象,而非水珠形变的内因。万物运动及变化的内因有且只有一个:物质作用。物质作用在物质层面表现出以太旋涡,在作用层面表现出以太场涡。

随着水珠内振动传递的持续,振动波在旋涡之间不断传递,导致大场涡与大旋涡形成,这个大旋涡导致水珠表面形变趋于平稳,最终导致水珠成为球形。它是水珠内部以太旋涡集体波振动相互平衡后的一种特殊空间结构,是盘古开天的水珠版。

这个无数场涡-旋涡融合成大场涡-大旋涡的过程称为融圆过程。

场涡

万物的场涡一般有两种状态:无源场涡与有源场涡。

一个场涡,若形成源自于外界物质导致的循环振动传递,是为无源场涡,即涡心处无振动源。如台风、龙卷风、漩涡及这里举例的石头的空间里的场涡,就是一个无源场涡。

一个场涡,若形成源自于涡心处物质作用导致的循环振动传递,是为有源场涡,即涡心处有振动源。如原子、电子、恒星、行星空间里的场涡,就是一个有源场涡。

一个物体的场涡涡心有无振动源,并不是固定不变的,振动源可能因某种因素而解体或消失,于是一个物体内的场涡就变成无源场涡。而原本只有无源场涡的物体,可能由于某种因素而聚集出核心振动物质而生成有源场涡。

依据场涡振动方向的顺逆时针不同,场涡又可分为正振动方向场涡与负振动方向场涡。于是场涡运动形态一般分为四种:

无源正振动场涡
无源负振动场涡
有源正振动场涡
有源负振动场涡

关于涡场的运动形态,会通过现实中常见的实验与生活中的现象来深入描绘并相互映证。

石头之波流一体·场涡

一块处在地表的普通石头,是无数元素原子组成的聚集体,这是一般物理知识描绘。以太旋涡论下,原子是微观以太旋涡,原子内外空间都有以太在流动,由此产生力场梯度分布,表现为电荷。原子以太旋涡的黄道面上,有更微观的电子以太旋涡在随波逐流作绕原子核公转,原子以太旋涡与电子以太旋涡,各自振动分别产生光波与X射线。同时原子的原子核,电子的电子核,都是更微观以太旋涡的聚集体,各自振动分别产生中子波与中微子波。

石头,就是无数原子以太旋涡的聚集体。

当自然界的风吹、雨淋、阳光晒作用于这块石头上,及其它石头碰撞这块石头,或空气中声音穿过这块石头,等等物质作用,都会在石头表面产生压力。这股表面压力在石头内部产生振动波传递,振动波传递又在石头整个内部空间不断反射,或折射出去。这用牛顿力学可以简单理解。

由于原子以太旋涡的存在,在原子时空尺度,这股振动波传递实际是借助原子以太旋涡间的相互碰撞来传递能量的,如一个台球碰撞另一个台球。这个传递过程中,因众多原子之间的相互碰撞并不精确地在一条直线上,而是有角度偏差,于是传递线程发生偏折,随着传递线程的延续,累加的偏折会超过360度,就会出现一个圆周状的振动波传递形态。

圆周状的振动波传递带动线程上的以太趋向流动,形成以太运动环,以太运动环反过来约束前进振动波的传递,即部分前进振动波在以太环内侧反射,于是前进振动波表现为向内收敛。如此无数的圆周状振动波,一环套一环向内收敛呈螺旋状形态持续传递下去,导致外界对石头物质作用的部分能量,以循环振动传递的模式滞留在石头内部空域,表现为物质作用能量被石头吸收。

如此一环套一环的向内收敛呈螺旋状形态的循环振动传递模式,有一个定义,那就是场涡。

场涡就是这个在宇宙中普遍存在,但没有被人类所认识的物质运动形态。它也是物质运动形态最重要的概念之一。

而原子以太旋涡只是以太旋涡的某个时空尺度的形态而已,在原子之上与原子之下的时空尺度都存在各类以太旋涡形态,于是循环振动传递存在于各个时空尺度,往上直到整个石头空间,往下直到以太层次。

当无数的循环振动传递形态出现在石头内部空间,就是一个分形形态的振动传递模式。石头内部空域,除了人们通常所理解的各硅氧等原子元素成分,及原子辐射、分子热振动之外,就是随时随地都被这种分形传递振动所填充。其它万物内部空域也存在同一分形传递振动作用形式。

由于万物是以波流一体结构形态存在的,而波本质是以太在平衡位置上的运动,于是在场涡诞生时,场涡会驱使线程上的以太沿场涡振动力场方向流动,当这个流动构成一个闭合环时,无数的以太环以同一圆心运动时,就形成以太旋涡。

这是以太旋涡形成的内在物质作用机制。

虽然人们观察到台风、龙卷风、水漩涡形成在于水汽空气分子的圆周运动,但是圆周运动中以太层次的场涡形态在此之前则是没有认识到的。物质的圆周运动并不是天然地持续着的,而是由以太场涡来推动。台风、龙卷风、水漩涡的水汽空气分子,只是在场涡推动的以太旋涡上作随波逐流运动。

场涡与旋涡的关系:旋涡是物质循环结构,而场涡是能量循环结构。场涡形成旋涡,旋涡承载场涡,两者波流一体。在古代,与之对应的词就是浊气:

浊气=场涡与旋涡的波流一体

对万物结构来说,都存在场涡,这是当下物理界所没有认识到的,也是只借助于光与影为代表的感官所无法认识的。这里通过牛顿第二、第三运动定律结合以太认识,则简单推导描绘与定义出这个概念。

由于石头随时受外界物质作用,会产生无数的各时空尺度的场涡,而无数的场涡又形成无数的以太旋涡。以太旋涡具有空间稳定性,于是一块石头内部空域,被无数的以太旋涡所填充,也被无数的场涡所填充,原子以太旋涡,只是这无数以太旋涡中的一部分,而非人们观念中的全部。

无数旋涡因涡流合流或对冲而表现吸引或排斥作用,于是振动能量继续在这些旋涡之间传递,当这股振动能量以某个中心为趋向运动在所有旋涡之间传递,并形成一个循环振动形态时,就构成一个整体大场涡,这个大场涡继而形成一个大旋涡,也即:

万物内部,都存在一个大旋涡,与一个大场涡

所有小旋涡围绕这个大旋涡作圆周运动或作圆周运动趋向,这就是最前面章节描绘的盘古开天的石头版。

象一个指纹

这个大旋涡与大场涡各有一个涡心,会应外界物质作用的变化,两个涡心会出现重合或分离的现象,当重合时,表现为物质结构与运动形态稳定,当分离时,表现为物质结构与运动形态变化。

物体内部的大场涡运动形态,会因外界的物质作用变化而发生形变,这种形变会传导到下一时空尺度的以太旋涡,导致下一时空尺度下的以太旋涡之间发和相互作用,会根据复杂性不同有固体、流体、气体、生命体等等状态的区分。

原子、电子、台风、漩涡、行星、恒星,都是这个大旋涡与大场涡稳定结合后的直观结构特例。生命内涵解构、意志与灵魂的诠释及中医原理也都是建立在这波流一体理论下的场涡运动形态上的,会在中下篇里详细阐述。

波流一体·气

波流一体,曾在解决土星六角旋涡之迷中提到,这里作一番详解。它是物质运动形态最重要的概念之一。

当下物理主流认识是西方科学理论,西方科学理论因人们的宇宙观问题而抛弃了以太,除了说不清万有引力的成因,电荷的本质,磁电场的内涵,诸如构建的经典原子模型、夸克理论、相对论、量子力学、光电学说等等都走上了歧途,误导人们甚深,也解决不了人类急需的可控核聚变、高效星际载人等难题,其它如湍流形成的内在机理、介质与波速的内在联系也是莫明其妙等等,关于波流一体这种物质运动形态的理论认识更是没有的。

有了以太认知,波流一体可以通过牛顿力学简单推导与描绘:任一空间的以太运动时,必先推开运动前方的以太,当前方以太排开的速度小于后方以太推进的速度,于是形成以太之间的相互作用。这作用空域的以太内压升高,当内压逐渐释放时,就产生纵波传递。结果就是以太在不同时空尺度的物体内外不断地流动,此以太推动彼以太,彼以太推动此以太,无穷无尽,同时以太纵波,在各物体内外不断地反射折射中,这就是波流一体。

波流一体,即各个时空尺度的以太运动结构在时刻流动并传递着纵波。

在日常生活中很常见,比如流动的空气(风)中必有声音在传递,湍急的河面上必有波浪在翻腾,其实都是波流一体现象。而波与流之间如何相互影响,则少见人上升到理论,这些日常现象对应到以太,可以直观理解流动的以太内的波传递过程。

构成物体的以太流与以太波传递物体的波流一体,应波速与流速的不同,作用对象时空尺度、结构的不同,会产生综合作用:

波振动明显时,就会导致物体空间结构出现波的形态。比如水面波,就是水底波振动改变水体的空间结构后出现的横波影像,又比如物质波、结晶现象就是波对粒子的影响。
流动明显时,会对承载的波产生拖曳与滞留效果。比如光波、声波的红移与蓝移及物理界玄乎的时空弯曲,都是以太涡流对波传递的拖曳与滞留后产生的现象。
有的波流一体效果很不明显,比如固体内的波振动,但根据物质运动的作用,可以判定其必然存在。

波流一体的概念在整个宇宙的认识中非常重要,它囊括了所有物质运动形态。在以太旋涡理论里,专门为此设了一个定理:

万物结构都是波流一体形态。

以太的波流一体运动形态,在古代有一个专有名称,那就是“气”。气就是集振动与流动于一体的以太,这是易道思想上的概念。因此又有一条等式:

以太波流一体=气

也即万物都是气。国人熟悉的关于气的描绘有“轻气上升以为天,浊气下沉以为地”,轻气,即平稳流动并振动态的以太;浊气,即旋涡湍流并振动态的以太。因以太=道,故气=道的流动。关于气与道的理解,会在《广义时空论附录下·幻化意志篇》中进一步阐述。

这里通过一块普通石头内部的波流一体运动形态,来展现万物内部的普遍存在却不为人们认知的物质运动形态,这在当下所有西方科学理论中是没有的。

通过这个认识,可以简单解释一下人们感到玄之又玄的一段话“道生一,一生二,二生三,三生万物”:

道,即以太,物质,《道德经》第二十五章“有物混成,先天地生”的那个物;
道生一,一就是气,即道的流动,也就是波流一体;
一生二,气由于运动方向不同,形成顺以太旋涡与逆以太旋涡;
二,即顺逆以太旋涡,分化出轻浊、阴阳、正反、男女、生死、动静等等对立概念;
二生三,顺逆以太旋涡之间相互耦合,形成次生以太旋涡;
三,即次生以太旋涡,这是对立后的统一形态;
三生万物,不同次生以太旋涡之间再次通过吸引与排斥等相互作用,就有了万物形态。

化合反应

受外来物质作用的影响,相互独立又临近的原子的涡管相互吸引,原子间开始互绕,原子以太旋涡之间的耦合时空结构建立,形成微妙动态平衡。同时次生以太旋涡生成,生成过程中涡流冲击周边外围空间里的以太,形成振动波传递,在宏观上表现出光声电热等物理现象。

这是分子层次的聚变,强度也要远小于原子核层次的聚变,是化学作用中的化合反应的物质作用实质。

分子的分解反应与化合反应,与原子核的核裂变与核聚变,有类似的动态描绘,这就是不同时空尺度下的全息物质作用现象。那种以为不同层次物质结构有迥然不同的作用原理的判定,是不能正确认识物质结构后的错误判定。

这分解反应与化合反应的重新解构描绘里,都无关电子的得失,也就没有诸如共用电子对之类的概念要与原子内轨道其它电子优先相互发生电荷作用的问题。

封闭时空

以太旋涡涡管还有一个特性是可以屏蔽光。

当涡管内壁角速度达到一定程度时,外部入射与内部出射的光都会被涡流拖曳成圆周形,于是入射光不能穿过涡管内壁,而涡管内壁空间里的出射光也不能从涡管内壁穿出,对外部观察者来说,涡管内部空域就是不可视,对落入涡管内部的观察者来说,涡管外部空域也是不可视。涡管内壁上的以太流,构成管内与管外的分隔面,使涡管内壁空间形成一个独立的封闭的空间,这就是封闭时空原理。

以太旋涡涡管对光的偏折与拖曳,是以太涡管空域的“时空弯曲”现象。

地球上人们看的见的以太旋涡就是台风、龙卷风、水漩涡之类的水汽场景,而因地球表面以太湍流(即静电场)的运动,看不见的以太旋涡也是频繁出现,当这个看不见的以太旋涡包裹所处空域的人或物并屏蔽偏折内外的光时,人们就会看到被包裹的人或物在众目睽睽下突然消失。

而当这看不见的以太旋涡如台风消散一样解体后,涡管角动量消失,内部的人物才能被释放出来。由于旋涡运动导致粒子间振动变化的作用,被释放出来的人物出现容貌不变或过度衰老的样子,让人以为进入时空隧道。这的确是进入了时空隧道,只是这个时空隧道并非物理界那种充满神秘感,无法解释其原理的描绘,它不过是宇观宏观以太旋涡的涡管而已。

以太涡管存在两种运动方向,即顺时针方向与逆时针方向。与粒子同方向的涡流会加速粒子振动,导致进入涡管的人或物的时间加快,从而在地球标准时下计量观察就是人物过快消亡。与粒子反方向的涡流则会减弱粒子振动,如此导致进入涡管的人或物的时间减慢,从而在地球标准时下的计量观察就是人物寿命延长。

涡管不同方向对粒子振动速度的影响,就如高温与低温对粒子振动速度的影响,高温会加速粒子振动及物质结构变化,低温则相反。于是在涡管里,里面因方向不同容貌不变的过程被人们发现的多,过度衰老的过程被人们发现的少,在于后者早已消亡。

而不同星球有不同的以太旋涡强度与尺度,因此不同星球的原子振动频率是不同的,从而时间也不同,这在《星际穿越》电影中有对应描绘,地面上几小时,太空中的人却过了几十年,

封闭时空原理可以推广到万物之间的关系认识,比如一个关上的冰箱,一个关上的房间,都是一个封闭时空,这在《广义时空论上篇·像说》里有详细阐述。封闭时空原理,是时空隧道技术、隐形技术的基础理论。

黑洞时间

关于这种以太旋涡涡口形态下的黑洞,是否会出现时间变长变短之类的科幻小说或电影中常有的景象,答案是确定的。

由于落入黑洞的物体,受以太旋涡运动向心力减小或增大的影响,会出现扩张或收敛趋势,构成物体的微观原子以太旋涡之间的空间距离会变大或变小,粒子间的振动频率会减小或增加,于是出现时间变慢或变快的景象。

时间是人意识定义的,是用一种周期性运动来计量另一种运动,这个计量结果,就是时间。时间是运动的体现,离开人的意识,时间就是不存在的。因此对于能“观察”到物体落入黑洞中景象的人来说,他会看到物体的时间变慢/变快,就如看慢播/快播的电影,会看到从黑洞里出来的人与其岁月不相称的容貌。

这个以太旋涡运动导致粒子间振动变化的作用原理,也是百慕大这种地方出现时间怪异的根源。曾有报道说科学界发现南北极出现时间异常,也是这个作用原理。

黑洞

说到宇观以太旋涡的耦合结构,也附带可以说一说黑洞是怎么回事。

黑洞是霍金根据万有引力理论与经典原子核理论推导出的一个时空结构,大略是恒星由于能量耗尽发生引力坍塌,电子落入质子结合成中子,中子再聚集变成吸引一切物质,甚至光都不能逃逸的天体。

而其实科学界提到黑洞理论时,对其理论的基础概念如引力、电荷之类的内因都是说不清,因此也是用几个不可知的要素去建构这个黑洞理论,于是黑洞理论是基础不稳。人们相信霍金黑洞的存在,不过是相信经典物理理论与科学家的想象力而已。

而通过正负粒子定性为微观正反以太旋涡,万有引力定性为以太旋涡向心力,中子重新定性为原子核振动波,原子核结构重新定性为超微观以太旋涡的聚集体,可知霍金黑洞理论的基础支持就不存在了,这个黑洞理论可归于谬论。黑洞理论仍是错误的经典原子结构模型下的一个错误认识。

而宇观以太旋涡的存在,则可以产生类黑洞的时空结构:

宇观以太旋涡的涡管的入口,会如龙卷风的吸入口或台风的风眼一样,吸引一切经过其附近的物质,并拖曳着光,就如一个霍金黑洞。当这些被吸引的物质如木屑漂浮在水漩涡入口周围而围绕在这个涡管四周时空时,就屏蔽了其背后的星光,也如台风云汽屏蔽台风内部结构,从而在表现出黑洞形态。在科幻电影里经常出现黑洞描绘,其实就是这种形态,而非奇点形态。

黑洞,其实就是这种“涡口-涡管”结构形态,而非霍金黑洞那种“奇点”形态。涡口-涡管结构形态的内外,都是以太,只是以太运动的形态不同而形成如此结构。因此可以定性:

黑洞=宇观以太旋涡的涡口

自然,虫洞=宇观以太旋涡的涡管。这种涡管入口代表的黑洞类型,可通过水漩涡涡口、台风涡眼的形态来类比其结构与运动形态,于是就可简单判定:

黑洞的尽头是另一个时空,另一个星系的星核。

另一个星系的星核振动,产生星系以太旋涡及宇观涡管结构,涡管尽头的涡口,表现为黑洞,吸引一切物质。这些被吸引的物质沿着涡口以太流场落入涡管内,最终落到星核上,成为星核的一部分。

就如台风的涡眼是平静的一个空气空域一样,宇观以太旋涡涡管内部的涡轴空域是平静的以太空间,因此星核的星光与两极辐射可以沿涡管以太空间由内向外传递出来。传递过程中或被涡管壁拖曳吸收,或从涡口(黑洞)逸出,于是人们观察到“黑洞喷流”。

人类完全可以通过水漩涡的整体局部物质运动及对外界的波物质作用来模拟来认识与描绘宇观尺度的以太涡管涡口的物质运动。自然,这里仍沿用“黑洞”概念来命名宇观以太旋涡的涡口,但看官要清楚这里黑洞概念下的内在机制解释与经典理论的黑洞内在机制解释是完全不一样的,场景描绘则有某些共同点。

宇观耦合现象

耦合结构由于次生以太涡流的存在,可以减慢以太旋涡角动量的流失,从而让以太旋涡有更长的稳定状态,这是各个时空尺度下存在稳定耦合结构的物质作用内因。微观原子、分子以太旋涡之间存在耦合现象,宏观、宇观尺度也是如此。

宏观尺度,如两块磁铁相吸,就在于其空间存在磁铁以太旋涡的耦合吸附作用在拉近两块磁铁。又如两个旋转方向相反又临近的水漩涡作互绕运动,也是一种耦合现象。又如生命体雌雄之间的吸引,仍是一种耦合现象,只是复杂一些。在天文宇观层次的行星之间,恒星之间,星系旋涡之间,只要两个宇观以太旋涡尺度相当又相互临近,就会存在耦合现象:涡管相吸与互绕。如天文界发现的双恒星互绕现象,背后就是宇观尺度的以太涡管相吸耦合结构在支撑这种互绕运动。其实也存在双旋涡星系互绕现象,只是这种天文现象要观察到就更难了。

这种宇观耦合结构的形态与微观分子耦合结构相类似,存在宇观级别的“共价键”、“范德华力”,与微观化学分子分子以太旋涡的形态与作用仍只有时空尺度的区别而给人们带来迥然不同的感官体验,这里就不再过多描绘。

微观分子耦合结构由于尺度过于微小而不能让人类观察,宇观耦合结构则是尺度过于巨大而不能让人类观察。由于以太旋涡的涡管不反射光,人们永无观察到这种微观、宇观级别的以太旋涡涡管相吸耦合结构的可能,但通过旋涡运动的一般规律与宇宙全息构建方式的认识,则可以推导出各种时空尺度下以太旋涡耦合结构的存在,而不是当下科学界只停留在光与影的表象。

由这种认知可以判定:太阳系存在一个与太阳质量相当的伴星,可称之为太阴。

太阳-太阴构成耦合结构而存在于这个宇空之中。两者的互绕作用会导致以太旋涡内部各自轨道上漂移的行星发生各类自然现象,详细描绘有待于人们更多研究。

注:太阳系存在一个伴星,已是当下人们所怀疑与猜想,而在中国古代文献记载中,也存在一个与“太阳”对应的概念“太阴”,这里通过简单的旋涡耦合结构认识,可以判定太阳伴星--太阴是存在。当下太阴概念常指月球,而从月球的质量、尺度与太阳的质量、尺度对比可以知道,月球是无法与太阳相提并论的。

催化剂

催化剂是化学工业的一大类,故作一个小节专门说明其作用机制。

在化学反应里能改变反应物化学反应速率(提高或降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂。一般来说,催化剂是指参与化学反应中间历程的,又能选择性地改变化学反应速率,而其本身的数量和化学性质在反应前后基本保持不变的物质。

在经典化学理论中,化学反应的一般公式是:A+B=C+D。催化剂参与化学反应的一般公式是:

A+催化剂=X,B+X=C+D+催化剂

也即催化剂参与化合反应,生成中间产物X,同时改变化学反应速率,但最终被还原。

在现实化学实验中,化学家只是根据一种反应现象的前后产物来验证分子的不同,从而推导出化学公式,但无法验证这个化学过程中分子的实际结合或分离过程的。催化剂能改变化学反应速率,是很直观的现象,但催化剂参与化学反应生成中间产物并最终被还原这一描绘,则完全是化学家猜想的结果,而非确定的实验事实!

也即,没有什么实验证明中间化学反应及中间产物的存在,化学家只是根据化学反应的一般公式A+B=C+D,及催化剂又实实在在能改变速率,却又能保持反应前后不增不减,来推导出催化剂在化学反应存在“A+催化剂=X,及B+X=C+D+催化剂”这么一个过程。中间产物X是一种猜想,是为了给催化剂在化学公式中一个合理位置而想象出来的,而不是化学公式中必须存在一个中间产物。

同时,“催化剂参与化学反应生成中间产物”的说法,与某些物质作为催化剂时表现出的超高稳定性是相冲突的,比如金属铂,俗称白金,是化学、石油和化工反应过程经常采用的一种催化剂,但金属铂的稳定性是非常高的,在实验中一般只有强酸强碱能溶化,那么在非强酸强碱环境下的石油、化工生产条件下,如此稳定的铂又是如何与分子生成中间产物的呢?

另外,在化学反应公式中,存在分子数量匹对的原则,即1摩尔分子对应另1(或2、3)摩尔分子产生化学反应,可考查的常见无机化学反应公式里,这种对应的比率一般在1:1-1:5之间。比如2H2+O2=2H2O,是1:2,即1个O2对应2个H2,C+O2=CO2,是1:1,即1个C对应1个O2,等等。但是在化学反应通常加入少量或微量的催化剂,就能极大地加快化学反应的速率,是个可观察的实验现象,催化剂与反应分子的数量比率在实验中可达1:1000000。

“催化剂参与化学反应生成中间产物”的说法,带来的问题是如此少量微量的催化剂,在面对巨量的反应物双方分子里,这是如何实现速率的改变的?若按“A+催化剂=X,B+X=C+D+催化剂”这条猜想公式来理解,及摩尔分子对应量,那么在数量比率是1:1000000的情况下,这个中间产物要反复出现1000000次,然后才消失,这个高频反复的中间产物的结合与分离过程,显然只会拖累反应速度,而不是加快反应速度。是什么机制导致这个中间产物如此高频率出现并消失,却又能加快化学反应速率的?这个悖论是这条猜想公式无法解释的。

催化剂的稳定性及催化剂与反应双方剂量的悬殊差别,表明的是“催化剂参与化学反应生成中间产物”这个说法其实是不正确的。那另外答案是什么?这里用以太旋涡理论来描述催化剂的参与化学反应的另一种模式。

原子是微观以太旋涡,分子是多原子以太旋涡相互耦合后的空间结构,而电子绕核及连珠运动导致原子以太旋涡存在涡流偏向作用,表现为振动,从而导致原子周边空间存在以太波动,表现为可见光或红外紫外辐射等等,由此分子周边空间也存在以太波动,应分子的种类不同,其周边空间的以太波动的强度尺度也不同,这是基本认识。

催化剂,就是这么一种周边空间以太波动相对结合双方化学分子的以太波动强度尺度,过大或过小的分子结构形态。过大表现为提高反应速率,过小表现为减缓反应速率。要理解这一判定,可用温度对化学速度的影响来类比。

温度,原子热运动提高的宏观现象,在原子以太旋涡周边空间里,则表现为以太波动的强度与尺度的分布形态。升温能加速冰块溶化或橡胶变软,也能加速化学反应,这些现象都很直观。升温,在以太空间上,其实就是强化了以太波动的强度与尺度,从而让参与反应的双方化学分子,有更强的克服范德华力的能力,及反应分子内部的原子有更弱的共价键结合形态,从而加快原分子分裂过程与新分子的耦合过程,降温则反之。

催化剂,有着与升温或降温相同的功效,只是不表现出宏观热、冷这些可检测的感官特征,而是在催化剂原子周边空间表现为提高或降低以太波动强度与尺度,促进或减慢反应物分子以太旋涡的分解过程,从而改变这空间里的化学反应的速度,这是催化剂的作用实质。

催化剂的这个促进速度作用,也与电解反应很类似:都是高频波破坏与削弱原子耦合结构,从而加速化学反应的进程。而催化剂本身,如电解反应中的两个石墨电极一样稳定,不与反应物分子组合形成新的物质分子结构,即经典公式里的X是不存在的。

催化剂的这个促进或减慢速度作用也与水只参与溶解作用的许多化学反应相类似:水分子破坏与削弱反应物原子耦合结构,让反应物溶解后,双方分子加速化学反应,而水前后并不增减,比如Ca(OH)2+Na2CO3=CaCO3+2NaOH,若只将一堆氢氧化钙与一堆碳酸钠粉末混合,则几无化学反应,而只需在混合粉末中加入几滴水,化学反应瞬间发生。而生活中用水来灭水,则是水减慢化学反应的一个一般例子,火被水浇灭,其实是水减慢乃至中止燃烧物与氧气的化学反应过程,这些有水参与但前后不增不减的化学反应由于太常见了,让人意识不到水在其中起到的是一种催化作用。

以加速化学反应的催化剂为例,假设化学反应双方分子的空间尺度是1个单元体积,催化剂原子以太旋涡振动的空间影响范围是100个单元距离,那么催化剂的空间影响范围是1000000个单元体积(体积是距离的三次方)。

当催化剂混入化学反应双方的分子群里,催化剂原子以太旋涡振动瞬间提高周边空间1000000个单元体积内的以太波动强度,所有分布在这个空间里的反应物分子的耦合结构强度都被以太波动所削弱,加速共价键的断裂,也即耦合结构解体,致使各反应物分子以太旋涡分解成游离态的以太旋涡,也即离子,新生的双方反应物离子相互耦合,有更高强度的共价键结合形态及耦合结构,从而不被催化剂的振动作用与以太波动所破坏,于是能稳定存在于催化剂环境里。期间催化剂原子是不与反应物双方分子产生化学反应,不存在中间产物X。

催化剂的这种作用实质新认识,就没有如铂作为催化剂的稳定性与其中间产物之间的矛盾,也没有催化剂的剂量微小与反应物分子数量巨大之间导致的速率悖论。

催化剂的这种作用,其实也与太阳光照射下导致温度升高,导致植物加速生长的效果几近一致,可作一个类比:

                                 太阳--催化剂原子以太旋涡
                             太阳光--催化剂原子以太旋涡振动波
地球表面空间气温升高--催化剂周边空间以太波动提升
        植物细胞加速生长--反应物加速化合反应

减慢化学反应速度的催化剂催化原理是一致的,只是作用过程相反,即吸收催化剂周边以太波动而减慢分子以太旋涡的解体速度,类似于冰晶吸热降温,这里就不继续描绘。

催化剂这种全新认识,也可以来解说激素、酶对生命体的作用,或银离子(以太旋涡)的杀菌功效,也是激素、酶分子的以太波动对生命细胞分子、营养物分子的耦合结构的影响,甚至可以来解说癌症成因,会在《广义时空论附录(中)·生命意志篇》中描述。

电解液电池原理

电解液电池即化学电池,是将化学能转化为电能的一种构架。这在生活中很常见,如酸铅电池,锂电池,干电池,伏打电堆等等。当下人们只是笼统的认识到化学电池是将化学能转化为电能的一个构架装置,但其化学能释放后转换为电能的过程受错误的电子迁移理论误导而不能正确认识这一实际的转化动态过程。通过分子以太旋涡耦合结构与电本质的重新认识,可以作一个动态过程的一般描绘。

化学能,就是分子层次禁锢的运动,当分子以太旋涡解体或化合时,禁锢的运动被释放出来,人们就观察到能量反应。由此可知,化学电池原理,其实与上面物体表面物理章节中提到的电容器的放电原理是一致的,电容器放电过程是微观以太湍流解体产生振动波后的定向传递,而化学电池放电过程就是:

分子以太旋涡分解或化合反应产生振动波后的定向传递

分子以太旋涡与微观以太湍流本质都是以太涡旋,是微观尺度下的禁锢的运动。两者主要区别是承载的框架--化学电池结构与电容器给人的感官不同,及以太旋涡的尺度不同--一是分子层次,一是电子以下层次,可以作一个对比:

                                   电解液电池阴阳两极--电容正负两极
                                   电解质分子以太旋涡--电容内表面以太湍流与微旋涡
分子以太旋涡解体/结合产生振动(电)--以太微旋涡解体产生振动(电)

以石墨-锌干电池为例,人们一般观念中,化学电池放电时的电流是从阳极流出,从阴极流入,这仍是经典电子迁移理论下的错误认知。场景并不如此。

在电路中,电场是从阳极开始,直到用阴极结束。而在电池内部,电场是从阴极开始,直到阳极结束。阳极只是作为电解液中最不活跃的端点,能与活跃的阴极形成电解液内部的阴极——>阳极的电场,类似于PN结。如此形成一个单向的电场传递通道,于是能约束阴极化学反应产生的振动波定向往阳极传递,最后沿导线输向用电器。

阴极锌片与电解液相互化学反应后,反应表面产生振动波,振动波被电场约束单向传递,表达为电。因此在这种化学电池的阴阳两极中,相对活跃的元素是作为阴极端存在的,相对不活跃或惰性的元素是作为阳极端存在的,如锌—石墨电池,锌——铜电池,均是锌的活跃性高而成为阴极。整个干电池中,相对活跃的元素作为阴极的同时,也是作为能量源存在。

酸与碱

酸性与碱性是化学属性很重要的两类,故专门开小节分析其运作机理。

在一般化学实验中,人们发现带H+的分子呈现酸性,带OH-的分子呈现碱性,至于为何多了个H+就表现出酸的特征,多了个OH-就表现出碱的特征,这是经典化学理论是无法解释。这里用以太旋涡理论来具体描绘实验现象下的物质运动本质。

酸性与碱性,在化学实验中,其实是分子以太旋涡对仪器展现出来的信号特征。

如尝到醋的酸味,是舌头(仪器)接收到电信号,PH试纸(仪器)颜色变红或变紫,是眼睛(仪器)接收到的光信号。这些味道、颜色的感觉,都是信号,本质是波作用。它是微观尺度某类特定运动形态的分子以太旋涡对仪器作用产生的宏观现象,是一种信号归类。

分子以太旋涡中并没有“酸、碱”这类客观形态存在,有且只有微观以太旋涡的运动:涡流偏向与偏向后的波传递。如硫酸、烧碱之类的酸碱物质呈现出“酸性”、“碱性”这类化学属性,在于氢基-H离子、氢氧基-OH离子参与分子以太旋涡偏向过程有其固定作用特征。

酸的-H涡流偏向运动特征

在“原子活跃性”小节中曾提到氢原子H的特性:是所有元素原子之中运动处于最低平衡状态,有最小的空间尺度,排在原子周期表第一位。其它物理研究更发现有的重元素原子可以发射质子,在经典物理理论中,质子就是失去电子的氢原子,在以太论里,质子就是游离态的氢原子。

如此特征的氢原子,处于游离状态时,容易被捕获,被牵引。当它围绕在一个大质量且活跃性高的原子以太旋涡如氧、氯周边作公转运动时,可以认为是这个大质量原子以太旋涡的远核外大电子,如此“远核外大电子”的存在,导致整个大原子结构处于极不平衡状态,有极强的极性,也即有极强的涡流偏向作用,从而表现出特定的化学属性。

这种氢原子参与的次生以太旋涡(分子)的偏向涡流,在一个时段内表现出锯齿般的形态结构,导致整个分子以太旋涡结构,就如一个高速旋转的微观电锯锯片,对其它物质的原子耦合结构产生强烈破坏作用。在氢原子绕大分子以太旋涡公转的一个周期内,则如一个链球运动员拽着一个大链球旋转,可以产生很强的破坏作用。这个破坏作用,具体过程仍是如上面氢氧燃烧那样的旋涡的分解与结合过程的动态变化,宏观上表现为腐蚀性。

腐蚀性表达在PH试纸上,导致试纸表面浸染物的分子结构发生变化,从而出现颜色发生变化。当这种偏向作用向人的味蕾传递振动信号,就是酸味。如此化学现象下的众多物质归类,就是酸。

碱的-OH涡流偏向运动特征

水的分子以太旋涡结构是H-OH耦合形态,只有极个别H+、OH-游离出来,总体让水表现为中性,有微弱导电性。氢氧基-OH离子,本身是一种酸结构特征的小分子以太旋涡,金属离子则比氢离子有更高的运动周期与角动量,当金属离子与氢氧基-OH离子相结合时,就会破坏水的中性稳定形态,OH-离子构成金属离子的“远核外大电子”,从而导致金属离子-氢氧基-OH离子的次生分子以太旋涡耦合结构表现为碱。

显然人们无法观察到这个“金属离子-氢氧基-OH离子的耦合结构”的运动形态,但通过电荷本质是以太旋涡力场梯度分布的解构,与简单的正负电荷相吸相斥原理,及以太旋涡耦合形态的一般描绘,可以粗略描绘这个微观分子以太旋涡的运作机理。

以氢氧化钠分子以太旋涡耦合结构为例:

以钠离子以太旋涡Na+的原子核为不动基点,OH-离子以太旋涡围绕钠离子以太旋涡作顺时针公转运动,而氢H+则绕氧O-作逆时针公转运动。这种累加运动导致整个NaOH分子以太旋涡耦合结构会出现Na-O-H与Na-H-O两种状态。

当出现Na-O-H耦合结构时,Na+与O-两原子核因涡流相吸而相互靠近,导致Na+与O-之间的以太受挤压而被喷出分子作用中心,如呼吸运动中的呼气作用。当出现Na-H-O耦合结构时,因Na+与H+相互排斥,Na+与O-两原子核相互远离,导致Na+与O-外围的以太受吸引而吸入分子作用中心,如呼吸运动中的吸气作用。

Na-O-H耦合结构状态下,虽然以太是被从分子中心喷出,但受OH旋涡逆时针运动的影响,整体呈现逆时针湍流形态,而被Na+离子吸引,表现出收敛效果。而Na-H-O耦合结构下的吸引作用更是强化了这种收敛效果,在宏观作用上表现为碱性,在感觉上就是苦味。

氢氧-OH基对外作用的本质,仍是氢基-H的作用传递。只是给人们的感官不同而分别定义。若说酸-H对物质的腐蚀是电锯片的顺时针切割,那碱-OH基对物质的腐蚀是电锯片的逆时针切割。当等量的酸碱混合在一起,-H与-OH结合,相互发生耦合作用与振动波的干涉,表现为水(H2O)呈中性。

雪印堂主人注:这里对酸碱分子以太旋涡的运动解析,都是粗略的描绘,在于微观层次的分子旋涡运动,是原子以太旋涡运动强度、原子内部电子连珠结构周期、外部次生以太涡流偏向、宏观环境等等一系列复杂运动的整合结果,相关的精确定量分析远超人类的仪器能力。但这种描绘可以给人们一个参考作用,从而更接近化学作用的实质,而不是西方化学理论中那种静止的场景。

溶液导电性

金属盐水溶液或某些酸碱水溶液能导电,是很常见的现象。

虽然经典化学理论通过离子概念来诠释其内在机制,但通过上面离子内涵的重新定性,可知经典化学理论,用多一个电子或少一个电子的离子的存在来说明溶液导电的内在机制是一种错误理论。

比如化学知识中的“纯硫酸是一种极性非常大的液体,其介电系数大约为100。因为它分子与分子之间能够互相质子化对方,造成它极高的导电性,这个过程被称为质子自迁移。发生的过程是:2H2SO4==可逆==H3SO4++ HSO4−”其实是一种错误认识。

硫酸水溶液有导电性虽然是事实,但人们其实从来没有观察与证实这种“H3SO4+、HSO4−”结构的存在,这种结构及所谓的“质子自迁移”描绘只是人们根据错误的经典原子模型及共价电子概念想象出的错误结果。

在“电”章节揭示电其实就是导体内定向传递的以太振动波。电的传递与导体内的原子以太旋涡的振动形态有密切相关。由这个认识可以推导出溶液导电的机制也是一致的,即:

溶液内游离的原子以太旋涡在定向传递以太振动波。

以金属盐溶液为例,金属离子,其实是金属原子以太旋涡在溶液中的游离态。游离态的原子以太旋涡有更高的振动频率,当这种振动频率与电以太振动波相接近时,就能传递这种波。

对于非金属盐溶液,如酸碱溶液来说,则是酸碱分子以太旋涡在与水分子以太旋涡的动态平衡耦合-分离过程中,也会产生高频振动,当这种振动频率与电频率接近时,就表现出导电性。

物理工艺中,一种绝缘体若均匀加入极细金属粉末,会变为导体或半导体,这里只需将溶液中的各游离态原子以太旋涡的分布形态,当成绝缘体中金属分布形态就可简单地明了固体与液体导电性的同一机制。两者主要区别在于溶液的液体态与绝缘体的固体态不同,及作为导电主体的离子态与金属颗粒态的不同。溶液导电性并不是存在所谓的多一个电子或少一个电子离子的结果。

极性与非极性

在经典化学理论中,极性指一根共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果电荷分布得均匀,则称为非极性。

由于电荷概念其实在现代物理中是一个未解构内涵的概念,因此用“电荷分布不均匀”来解说分子的极性与非极性,是在用一个不可知概念来解说一种化学现象,这同样也不是科学作风。

而通过共价键重新付予其内涵,及前面“电荷本质”小节中电荷是以太涡流的力场梯度分布的内涵解构,就可以知道分子极性与非极性的化学属性,源于分子次生以太旋涡的涡流偏向:

若次生涡流偏向是对称的,分子就表现出非极性。
若次生涡流偏向是不对称的,分子就表现出极性。

一般来说,由偶数相同原子以太旋涡耦合而成的分子以太旋涡,通常是非极性分子,如双原子同元素气体分子,氧气O2、氢气H2、乙炔C2H2都是非极性分子。而奇数原子以太旋涡耦合而成的分子以太旋涡,是极性分子,如臭氧O3、一氧化碳CO。

由奇偶数不同原子以太旋涡耦合成分子,则须具体分子具体分析,极性与否是由不同原子以太旋涡间的耦合结构的对称性决定,比如水分子H2O是极性分子,说明其分子结构是不对称的,而二氧化碳CO2是非极性分子,说明其分子结构是对称的。微观的原子以太旋涡耦合结构的对称性与宏观的化学物质的极性现象是相互映称的,可以对应检验。

溶解

溶解是一个常见的现象,象盐溶于水,硫酸溶于水等现象。经典化学理论里只告诉人们溶解是物质分子在溶液的扩散过程,但从未说这个扩散是如何动态发生的。通过墨汁在水中扩散场景,人们可以直观来理解溶解的动态过程,但这仍只是停留在颗粒层次的表面现象上,这种扩散现象来套用溶解过程并没有说明分子层次的动态物质作用细节。

溶解,在经典化学理论中是被归类于物理作用的,但按经典化学变化的思想:“化学是在原子层次上研究物质的组成、结构、性质、及变化规律的自然科学”来说,溶解后作为原物质形态消失,而产生新的化学属性,也是一种化学变化,只是它的可逆性很强,当溶剂蒸发后,物质重新析出晶体,而被人们当成物理作用过程,其实物质与物质溶解后产生的溶液的化学属性是有很大区别的,比如干燥的氯化钠晶体与溶解后的氯化钠溶液对铁的腐蚀作用不在一个级别上。

溶解过程对应结晶过程,在经典化学理论中,对于原子是如何析出形成有序的晶体结构,也是无法动态描绘的,这里用全新的分子耦合结构模型,来解构分子层次的溶解与结晶的内在机理与动态过程。

这里以溶质食盐(NaCL)溶解在溶剂水(H2O)中作为实例来说明分子层次的溶解过程。根据溶解现象的溶质宏观整体结构慢慢消失在溶剂之中,并结合分子以太旋涡耦合原理,可以知道,水分子以太旋涡的对氯化钠晶体的作用要克服三种力:

一是氯化钠晶体表层的以太湍流的屏蔽力场

若溶剂分子以太旋涡的涡流作用与振动作用不能对溶质分子表面的以太湍流层结构产生破坏,那这种作用就不能影响以太湍流层包裹内部溶剂分子。

如铁块不会溶于水,就在于水分子以太旋涡的作用不能通过铁块表面的以太湍流层。溶质以太湍流层斥力的存在,是油不能溶于水的内在机理,而人们可以通过外界强力振动达成乳化结构,这是溶质以太湍流层被破坏后的溶解形态。

二是氯化钠分子以太旋涡之间的吸引力场,即范德华力

溶剂分子的涡流作用与振动作用克服溶质表面以太湍流的斥力外,还需克服溶质分子以太旋涡间的相互吸引力,即范德华力,才能将分子以太旋涡从溶质整体结构上剥离。

三是氯化钠分子以太旋涡内的氯原子与钠原子之间的耦合力,即共价键

分子以太旋涡内的耦合力,在三种力中是最强,分离也是最难,结果就是溶质微观以太旋涡空间结构的解体过程,是整体态--颗粒态--分子态--离子态逐步发生的。溶剂分子以太旋涡破坏溶质分子以太旋涡空间结构,就如打开多层包装越来越强的快递包裹。溶解过程会产生放热或吸热现象,是分子以太旋涡的涡流在分裂与聚合过程中对周边空间以太的作用现象。

如此溶解后的氯化钠--水溶液里,分布有多种分子、原子结构形态:

H2O分子以太旋涡耦合结构
NaCL分子以太旋涡耦合结构,
NaOH分子以太旋涡耦合结构,
HCL分子以太旋涡耦合结构,
H+原子以太旋涡游离结构,
OH-分子以太旋涡游离结构,
CL-原子以太旋涡游离结构,
Na+原子以太旋涡游离结构。

这是一种多分子多原子混杂后的溶液结构形态,从而让溶解后的溶液表现出新的化学属性。各种结构之间随环境温度或其它因素保持一种动态平衡,或相互结合,或相互分离。

离子与等离子

在经典化学理论中,离子一般指溶液中带正电或负电,并失去或得到电子的元素原子,一般化学式有Na+,SO4²⁻等,而共用电子概念是被否定的,原子以太旋涡的电子只参与连珠形态,并不直接参与化学变化中所谓原子间的电子转移,因此离子概念的内涵也是被否定的。

即溶液中并不存在多一个电子的负离子或少一个电子的正离子,只有微观原子、分子以太旋涡的游离态与耦合态之分,从而有不同的物质化学作用表现。

等离子同样不存在。等离子只是非液体环境下,分子以太旋涡分裂后形成的游离态的原子以太旋涡,比如超高温会导致分子以太旋涡分裂解体,形成游离态的原子以太旋涡,而原子以太旋涡缺少次生以太涡流的屏蔽,从而有更强更直观的电子连珠振动偏向辐射与电荷作用,有区别于普通固液气三种物体形态的特殊形象。如此游离的原子以太旋涡的整体形态,被人们定义为等离子体。

而在错误的经典原子模型及共用电子概念误导下,科学界根据等离子的带电实验形态,设想出等离子也是多一个电子或少一个电子的元素原子,从而有大家经典物理知识里的等离子形象,这是一种错误形象猜测。其实等离子也只是游离态的原子以太旋涡的聚集体而已。离子的定性等式如下:

离子=游离态的微观以太旋涡

离子,是一个相对概念,是区别于耦合状态下原子、分子以太旋涡而言的。对于一个大分子以太旋涡来说,其内部的各个耦合结构下的原子或小分子以太旋涡,只要因某种作用游离出来,都可构成这个大分子以太旋涡的离子形态。比如OH-,相对于H+,是一个耦合结构形态,相对于H-OH,则是一个离子。因此离子,可以是单一原子以太旋涡,也可以是耦合结构下的次生以太旋涡。

燃烧与水分子结构考查

水是构成地球生命的最重要物质,也是化学实验中一种最重要的溶液溶剂,根据上面介绍的耦合原理,专门作一个水分子结构诞生与运动形态方面的考查,以期给其它分子结构及运动形态作一个参考。

通过经典化学理论中的水分子模型,人们直观了解了水分子的结构,但这个模型是一种静态结构,让人们以为氧原子核与氢原子核之间就是如模型一样固化结构存在。通过“化学的几个问题”章节中对共用电子的否定,可知这是一种错误模型。

实际是水分子在高速旋转中,所有物体内的原子分子都在旋转中,而不是一种静态结构存在。这里通过氧气、氢气燃烧描绘,来解析以太旋涡理论下的动态水分子结构模型。

燃烧

在“原子活跃性”小节中提到氧原子归类于“连珠频率高,偏向大,角动量低”的微观以太旋涡,因此表现出很活跃的化学属性;而氢原子则是“连珠频率低,偏向低,角动量低”的微观以太旋涡,很容易被其它角动量高的微观以太旋涡捕获。两种气体分子因化学作用而分解,继而化合成水分子,是一种最常见物质存在。

氢氧燃烧的化学公式2H2+O2=2H2O,实际包含整个气体分子分裂与聚合的动态过程,但过于简要,不能让人们直观理解微观原子层次的物质作用的实质。

由于初始的氢气在氧气中的点火,产生强烈振动波,这股外来振动导致部分氧、氢分子以太旋涡耦合结构被破坏,产生游离的氧、氢原子以太旋涡,同时氧、氢分子以太旋涡解体后冲击周边以太,产生新的振动波,表现为燃烧时火焰的内焰及发光。这里包含的化学公式是:

O2+振动波=O+O

H2+振动波=H+H

游离的氧、氢原子因振动波辐射后,所处空间以太振动强度变弱,于是能相互耦合成为OH次生以太旋涡,OH次生以太旋涡再与游离的H以太旋涡聚合,这两次结合过程也产生新的振动波,表现为燃烧时火焰的外焰及发光。这里包含的化学公式是:

H+O=OH+振动波

OH+H=H2O+振动波

游离的氧原子以太旋涡与氢原子以太旋涡因受激振动强化电子连珠的偏向结构,表现为发射特征光谱。

这分裂与聚合产生的两股新振动波,再次导致其它氧、氢分子以太旋涡耦合结构被破坏,如此反复循环,直到最后所有氧、氢分子结构都被破坏并聚合成水分子次生以太旋涡,振动波衰减而不能影响剩余的氧分子或氢分子,表现为火焰熄灭。

这是一个分子层次的振动波链式破坏反应过程,与中子(波)导致原子核裂变的链式反应有相类似的描绘--都是波对旋涡结构的分裂,在分裂过程中产生新的波,反复循环,只是时空层次不同。

其它如火烛燃烧、木材燃烧等等人们习以为常的现象的物质作用过程,都与这氢氧燃烧有相同分子层次的分裂与聚合机理,只是参与的物质不同有更复杂的物质结构变化与光谱辐射现象。

O-H聚合

燃烧过程产生游离的氧、氢原子以太旋涡。氧原子以太旋涡比氢原子以太旋涡有更高角动量,于是在运动中能占主导地位,表现为氧原子与氢原子产生耦合结构后,氢原子就如宇宙中一颗伴星围绕一颗恒星公转一样,围绕氧原子公转,两者互绕后产生的次生以太旋涡方向与氧原子以太旋涡方向一致,这就是水分子的OH结构形态。

H-OH聚合

而OH次生以太旋涡再与游离的氢原子H以太旋涡通过范德华力结合并互绕,形成次次生以太旋涡,即水分子H-OH以太旋涡。水分子以太旋涡之间再通过范德华力相互结合,形成宏观水体结构。

这个水分子结构模型,是一个多旋涡契套空间互绕结构,在不停地旋转中,空间结构应内部各层次以太旋涡的方位不同,在时刻变化,是一个动态模型。其它多原子以太旋涡结合成的分子以太旋涡结构的考查,可以参考这一过程描绘来理解。

在整个氧、氢原子以太旋涡的化合过程中,氧原子O以太旋涡有最高的偏向振动形态,与旋涡方向相反的氢原子H结合后,产生的耦合互绕结构即OH次生以太旋涡,处于中等程度的偏向振动形态,而OH次生以太旋涡与旋涡方向相反的氢原子H结合后,产生的H-OH互绕旋涡结构即水分子有最低程度的偏向振动形态,于是人们观察到中性的水。

OH结构是通过耦合结构结合的,而H-OH互绕结构是通过范德华力结合的,因此OH结构比H-OH结构有更高的稳定性,当受到外界光声电及各类化学作用,H-OH结构很容易分离,成为游离态-H、-OH,从而表现出酸性、碱性。

分子化学属性与红外辐射

曾在“原子化学属性”小节通过电子连珠导致原子以太旋涡的偏向形变来说明原子化学属性的内在机制,这里分子化学属性的有相类似的内在机制,是源于分子内部多原子互绕导致外围次生以太旋涡的周期性偏向形变。

在一个长时段内,分子以太旋涡由于内部多原子耦合互绕,会以互绕中心为涡心,对外界表现出复杂的空间结构形变,这个形变还杂合了内部原子以太旋涡的电子连珠偏向作用,从而能对周边产生力的作用。这个力的作用,对周边空间以太表现出振动波传递;对周边其它微观旋涡表现出涡流的合流与对冲作用,从而产生化学反应或物理作用。

由于次生以太旋涡的偏向,在频率、强度方面远较原子以太旋涡的偏向要小,于是这种偏向一般产生偏红外辐射,这是一般物体都会产生红外线的原因。同时这种偏向也会与相同周期的入射红外线产生干涉,表现为红外吸收。

这其实是分子发射光谱与吸收光谱现象。如CO2气体就有很强吸收红外线的作用,即源于这种周期性次生以太旋涡的偏向干涉。但这种分子以太旋涡周期性的偏向远较原子以太旋涡电子连珠下的偏向要复杂,表现出有更多的谱线。

比如对于某个双原子结构的分子来说,设其双原子的谱线数分别是15条与31条,那么这个分子的谱线数就有C(1,15)*C(1,31)=465条之多,且谱线之间会出现接近重叠现象,要是更多原子结构下的分子的谱线数,将会是一个巨大的数字,这远超出人们仪器的分辩能力,因此没有必要特别研究,但要认识到这种振动波存在及成因。

次生以太旋涡的涡流偏向作用,则表现为溶解析出作用、酸碱性、氧化性、腐蚀性等等常见化学属性。

分子化学属性与红外辐射,是分子以太旋涡内部的原子互绕作用后,分别产生的流体作用结果与波动作用结果,是一体两面。